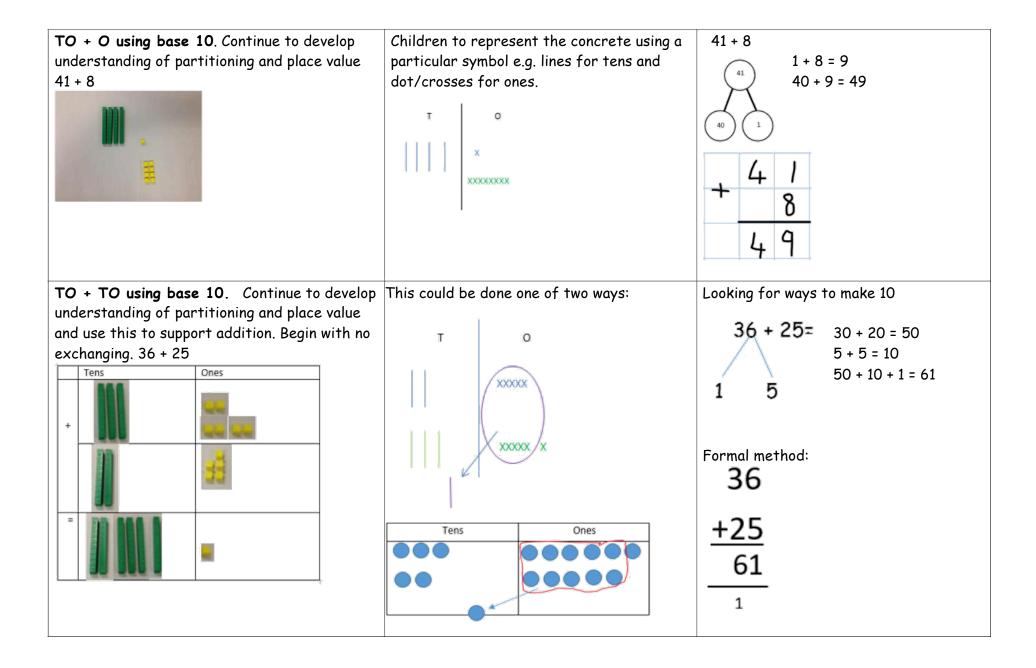
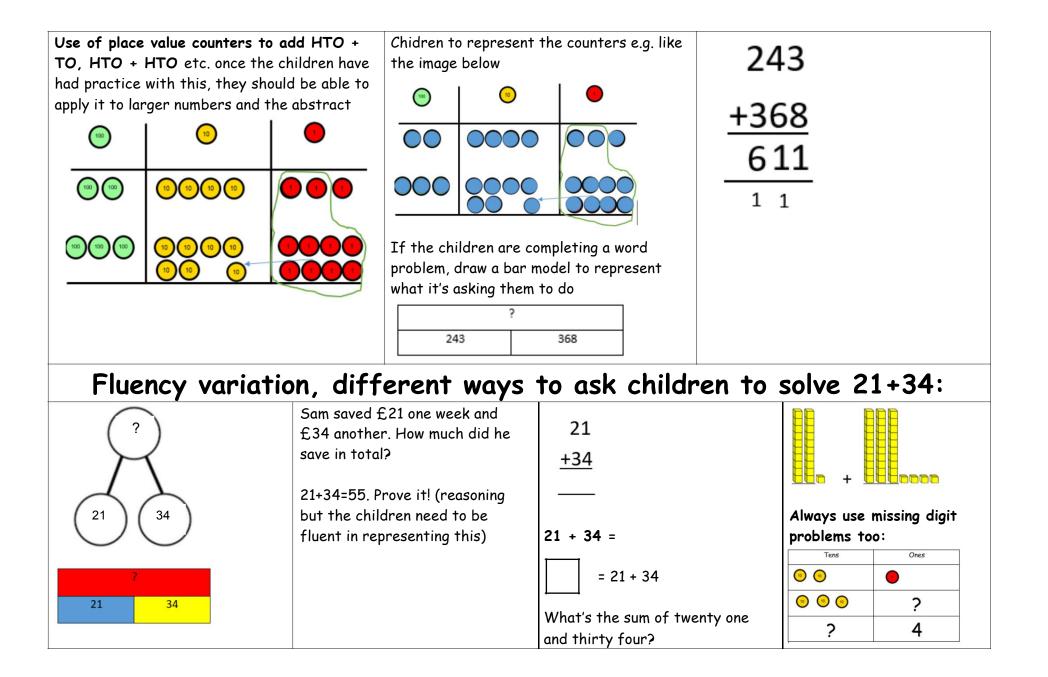
Pensans CP School


Maths Calculation Policy


Reviewed on February 2017 Next review date February 2019

Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		4 + 3 = 7 (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4? What's the total of 4 and 2? 4 + 2
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: 6 + 5	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g 6 + \Box = 11 and 6 + 5 = 5 + \Box 6 + 5 = \Box + 4

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (use various objects too) rather than crossing out- children will physically remove the objects 4-3=1	Children to draw the concrete resources they are using and cross out. Use of the bar model:	4-3 = -3 $4 - 3$ $4 - 3$ $4 - 3$ $4 - 3$ $7 - 3$ $4 - 3$ $7 - 3$
Counting back (using number lines or number tracks)	Children to represent what they see pictorially e.g. 6 X X X X X X X ? 2	

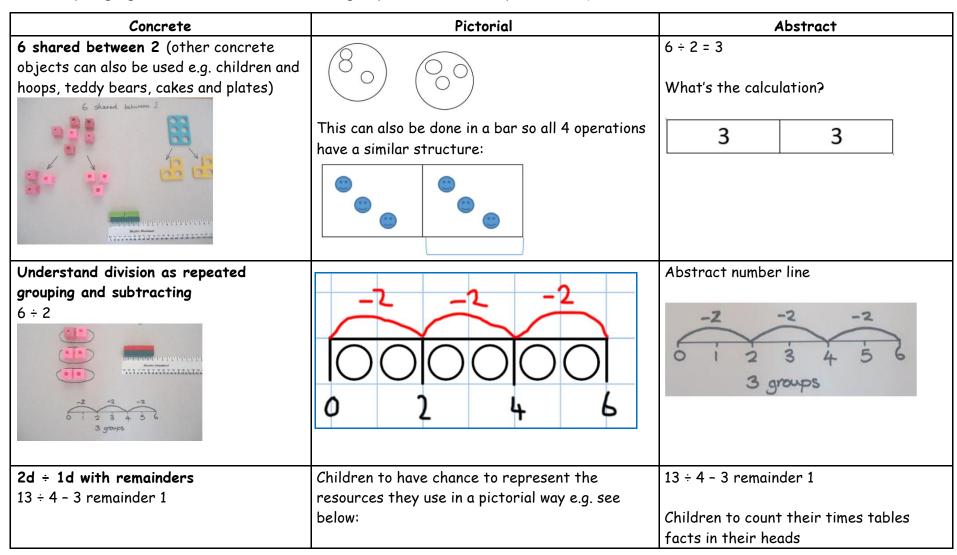
Finding the difference (using cubes, numicon or Cuisenaire rods, other objects can also be used)	Children to draw the cubes/other concrete objects which they have used XXXXXXXX XXXXXX Use of the bar model	Find the difference between 8 and 6. 8 - 6, the difference is ? Children to also explore why 9 - 7 = 8 - 6 (the difference, of each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)
Making 10 (using numicon or ten frames) 14 - 5 Image: Children could also do this by subtracting a 5 from the 10.	Children to present the ten frame pictorially	14 - 5 = 9 You also want children to see related facts e.g. $15 - 9 = 5$ Children to represent how they have solved it e.g. $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ $14 - 5 = 9$ 5 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 $14 - 5 = 9$ 5 5 $14 - 5 = 9$ 5 5 $14 - 5 = 9$ 5 5 5 $14 - 5 = 9$ 5 5 5 $14 - 5 = 9$ 5 5 5 5 $14 - 5 = 9$ 5 5 5 $14 - 5 = 9$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Column method (using base 10) 48-7	т о 1 111111 	48 - 7 = 4 8 - 7 4 1

 Column method (using base 10 and having to exchange) 45-26 1) Start by partitioning 45 2) Exchange one ten for ten more ones 3) Subtract the ones, then the tens Column method (using place value 	Tens Ones	se 10 pictorially have had practice with the	It's crucial that the children understand that when they have exchanged the 10 they still have 45. 45 = 30 + 15 - 26 - 19
counters) 234-88	concrete, they sho subtraction. Like the other pic to represent the c	ould be able to apply it to any torial representations, children counters.	2 ³ 4 <u>- 88</u> <u>6</u> n to solve 391-186:
Raj sp spent more I had After	ent £391, Timmy £186. How much did Raj spend? 391 metres to run. 186 I stopped. How metres do I have	391 - 186 391 - 186 391 <u>-186</u> Find the difference ebtween 391 and 186 Subtract 186 from 391. What is 186 less than 391?	What's the calculation? What's the answer?ds Tens Ones 390 -06 05

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes)	Children to represent the practical resources in a picture e.g.	3 × 4
3 x 4 or 3 lots of 4	xx xx xx	4 + 4 + 4
	XX XX XX Use of a bar model for a more structured method	
Use number lines to show repeated	Represent this pictorially alongside a number line	Abstract number line
groups- 3 × 4	e.g:	3 × 4 = 12
	0 4 8 12	0 4 8 12
Use arrays to illustrate commutativity (counters and other objects can also be used)	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g.
$2 \times 5 = 5 \times 2$		2 × 5 = 10
22		5 × 2 = 10
		2 + 2 + 2 + 2 + 2 = 10 5 + 5 =10


Partition to multiply (use numicon, base 10, Cuisenaire rods) 4 × 15	Children to represent the concrete manipulatives in a picture e.g. base 10 can be represented like: 15 x 4 T O XXXXX XXXXX XXXXX XXXXX XXXXX	Children to be encouraged to show the steps they have taken 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
Formal column method with place value counters or base 10 (at the first stage- no exchanging) 3 x 23 Make 23, 3 times. See how many ones, then how many tens	Children to represent the counters in a pictorial way Tens Ones 6 9	Children to record what it is they are doing to show understanding 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ $20 \ 3 60 + 9 = 69$ 23 $\frac{\times 3}{69}$
Formal column method with place value counters (children need this stage, initially, to understand how the column method works)	Children to represent the counters/base 10, pictorially e.g. the image below.	6 × 23 6 × 3 = 18 6 × 20 = 120 120 + 18 = 138

6 x 23 Step 1: get 6 lots of 23	Hundreds Tens Ones	The aim is to get to the formal method but the children need to understand how it works.
Step 2: 6 x 3 is 18. Can I make an exchange? Yes! Ten ones for one ten		6 x 23 =
Step 3 : 6 x 2 tens and my extra ten is 13 tens. Can I make an exchange? Yes!		23 × 6
Ten tens for one hundred Step 4 - what do I have I each column?		<u>138</u>
When children start to multiply 3d x 3d an To get 744 children have solved 6 x 124	d 4d x 2d etc, they should be confident with	the abstract: 124 × 26
To get 2480 they have solved 20 x 124		2 - 4 4 2 - 4 8 0
		3 2 2 4 1 1
		Answer: 3224

Fluency variation, different ways to ask children to solve 6 x 23:			
23 23 23 23 23 23 ? With the counters, prove that	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? Tom saved 23p three days a week. How much did he	Find the product of 6 and 23 $6 \times 23 =$ $angle = 6 \times 23$ $angle = 6 \times 23$ angle = 23	What's the calculation? What's the answer?
6 x 23 = 138 Why is 6 x 23 = 32 x 6?	save in 2 weeks?	× <u>23</u> <u>× 6</u> — —	

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Use of lollipop sticks to form wholes Use of Cuisenaire rods and rulers (using repeated subtraction)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2d divided by 1d using base 10 (no remainders) SHARING 48 ÷ 4 = 12 Start with the tens.	Children to represent the base 10 and sharing pictorially.	$ \begin{array}{c} 48 \div 4 \\ 4 \text{ tens} \div 4 = 1 \text{ ten} \\ 8 \text{ ones} \div 4 = 2 \text{ ones} \\ 10 + 2 = 12 \end{array} $
Sharing using place value counters. 42 ÷ 3= 14 Image: Share the 4 Image: Share the 4		42 ÷ 3 42 = 30 + 12 30 ÷ 3 = 10 12 ÷ 3 = 4 10 + 4 = 14

Use of the 'bus stop method' using grouping and counters. Key language grouping- how many groups of X can make with X hundreds'- this can als done using sharing! 615 ÷ 5	for the children no longer t we It can also be done to c	· · · ·	<u>123</u> 5 6 ¹ 15
н т о Step 1: make 615			
B Step 2: Circle your			
н т о Step 3: Exchange	e 1H circle		
Step 4: exchange 1T 10ones and circles groups of 5	for		
Fluency variation		to ask children t	
5	have £615 and share it equally		What's the calculation? What's
' '	etween 5 bank accounts. How	5 615	the answer?
, <u> </u>	nuch will be in each account?	01010	Н Т О
g	15 pupils need to be put into 5 roups. How many will be in ach group?	615 ÷ 5 =	

How many 5's go into 615?

Long division

Concrete	Pictorial	Abstract
$\begin{array}{c c} \hline Model \\ \hline \hline m & H & T \\ \hline \hline 0 & \bigcirc &$	Children to represent the counters, pictorially and record the subtractions beneath.	5tep one- exchange 2 0 thousand for 20 hundreds 12 2544 so we now have 25 hundreds.
Im H T 0 Im Im Im Im Im Im Im		Step two- How many groups of 12 can I make with 25 hundreds? The 24 shows the hundreds we have grouped. The one is how many
How many groups of How many groups of 12 2544 12 2544 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one.		hundreds we have left. Exchange the one hundred for 10 tens. How many 24 12 24 14 12 2 2 The 14 shows how many tens
Exchange the one hundred for ten tens so now we have 14 tens. How many		I have, the 12 is how many I grouped and the 2 is how many tens I have left. 12 2544 Exchange the 2 tens for 20 area. The 24 is how mere even
groups of 12 are in 14? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2		12 2544 24ones. The 24 is how many ones14 14I have grouped and the 0 is12 24 24 0what I have left.